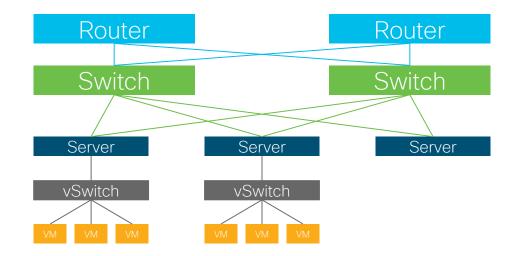
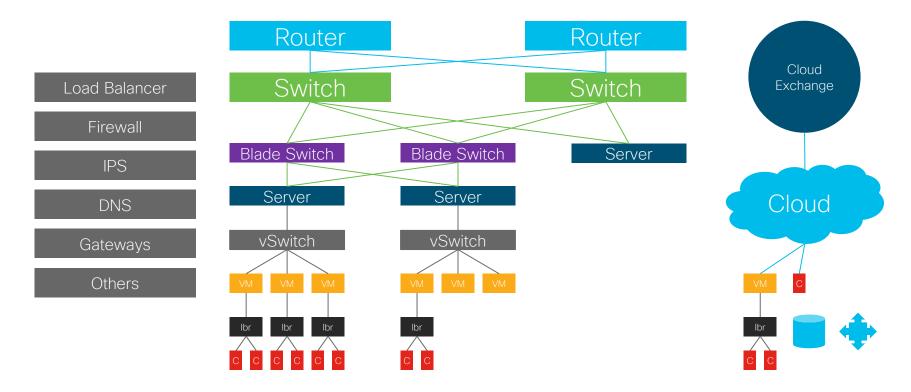


Cisco ACI und DNA

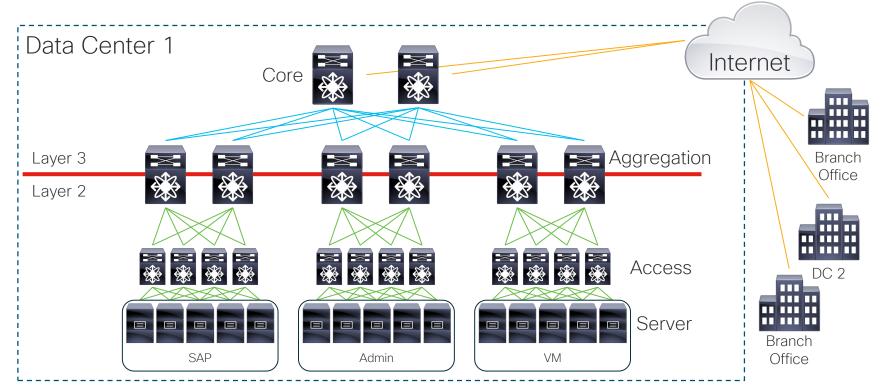
Veränderungen des Kompetenzprofils des Admins der Zukunft


Jan Haasch Business Operations Manager Security and Trust Office Tim Heckmann Consulting Engineer Customer Experience

Agenda


- Classic Network Design
- Software-defined Networking
- Cisco ACI
- Cisco DNA & SDA
- Future Net Admin Skill Set
- Summary and Evaluation

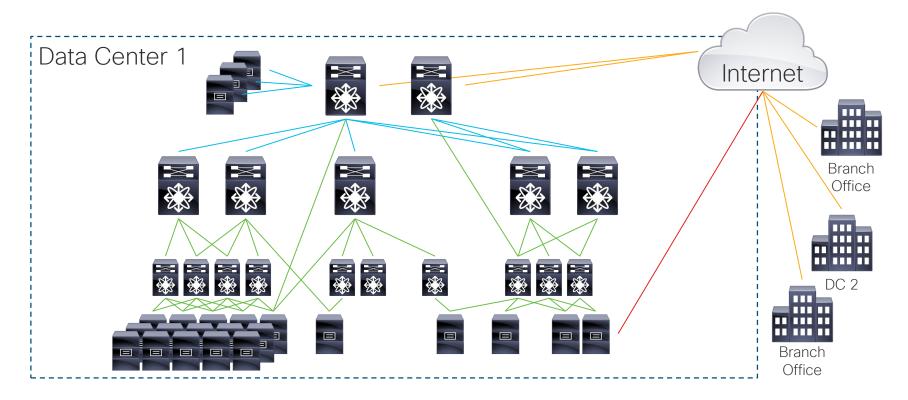
Classic Network Design


Network Evolution

Network Evolution

Data Center 3-Tier Design

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public


Data Center 3-Tier Design

"Life is what happens to you while you're busy making other plans."

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Data Center 3-Tier Design

Network Revolution

I want an agile bimodal hybrid cloud so we can develop containerised serverless trustless microservices applications to take us digitial to avoid disruptions from any unicorns. Oh ... and I want DevOps ... two of those ... What has changed?

- digitization
- cloud computing
- app economy
- Internet of Things
- software-defined networks
- tech unicorns

Four Ages of Networking

Stone Age

Spanning Tree VLANs

Bronze Age

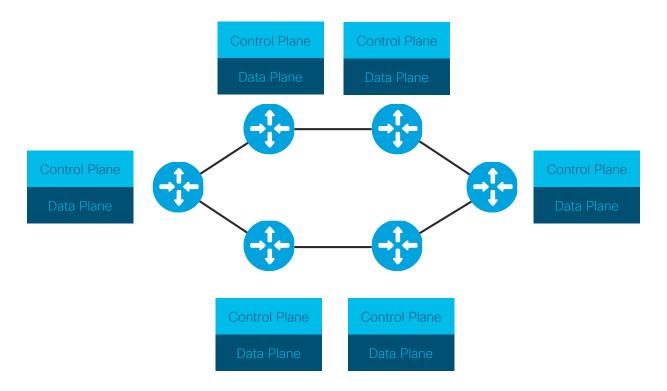
Routing Protocols WAN Design IP-mageddon Renaissance

SDN OpenFlow Controllers Overlays MP-BGP VXLAN Micro-Segmentation White Box

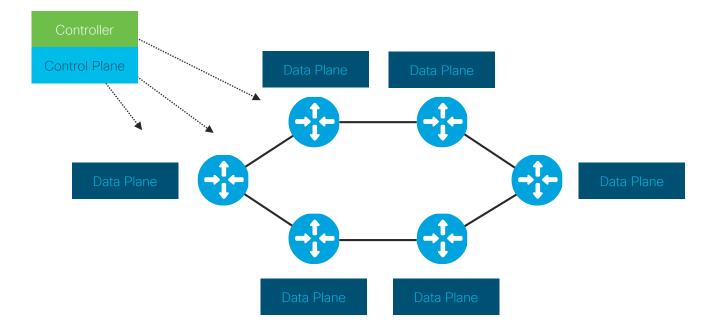
Programmable Age

Cloud Python REST/APIs NETCONF/YANG Fabrics NFV Containers (Net)DevOps Software-defined Networking

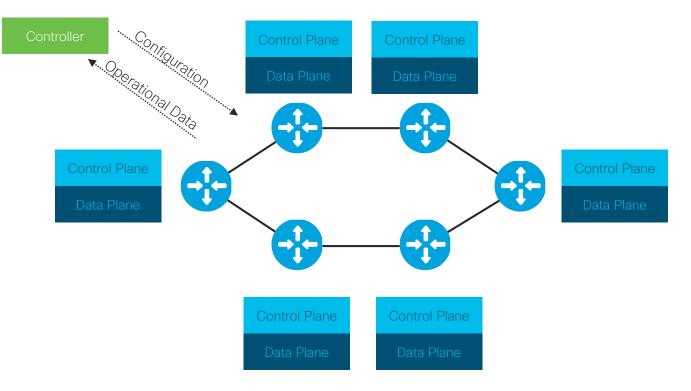
"Software-defined networking (SDN) technology is a novel approach to cloud computing that felicitates network management and enables programmatically efficient network configuration in order to improve network performance and monitoring." -Kamal Benzekki


SDN suggests to centralize network intelligence in one network component by disassociating the forwarding process of network packets (data plane) from the routing process (control plane).

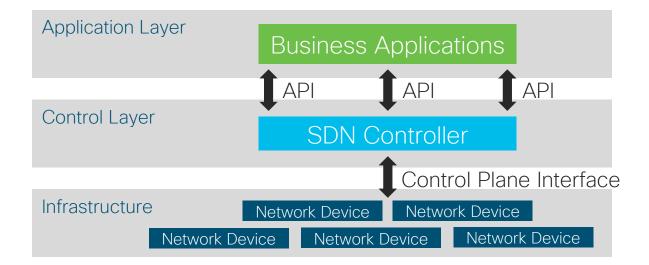
Inside The Box


- Control Plane | RIP, OSPF, STP, EIGRP, SNMP, CLI, etc.
- Data Plane | store-and-forward, ACL, encryption, etc.

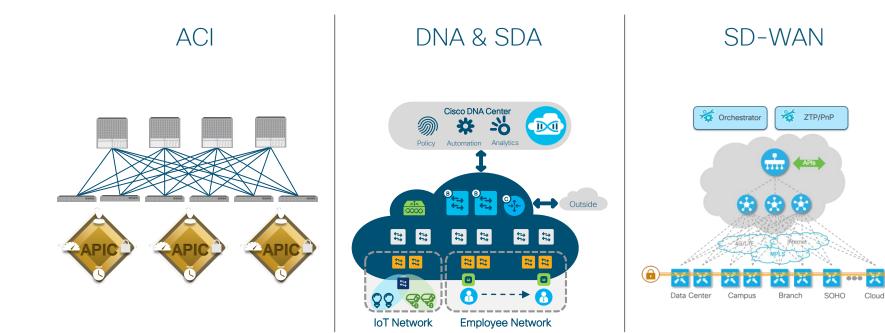
Traditional Networking



© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

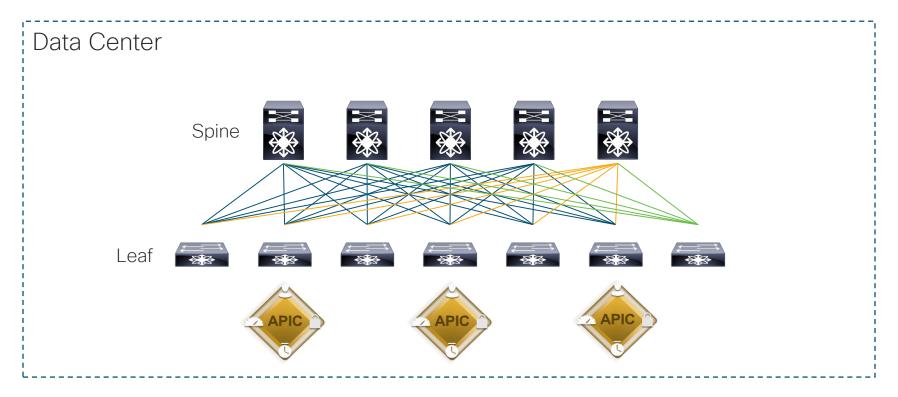

SDN: The Original Idea

SDN: What It Really Is Today


SDN: High Level

Advantages

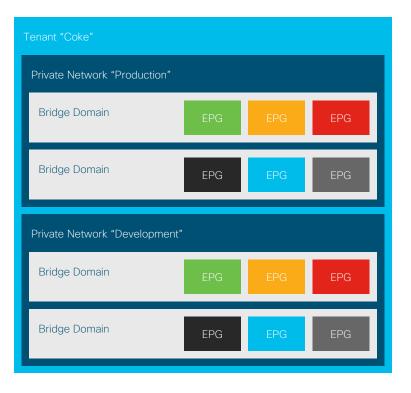
- Flexibility:
 - IT groups can become more agile; deployment backlogs are less problematic.
 - Departments are more easily able to self-select services including internal, 3rd-party and external cloud services.
- Automation:
 - Features (protect, segment, provision, add policies) are easily added to new workloads, groups, branches, employee devices and cloud resources.
- Visibility drives speed:
 - SDN provides a holistic view of application connectivity and external needs (branch, device).
 - Applications can ask for resources, routes, and instantaneously verify traffic flow (by application) across the campus and data center.

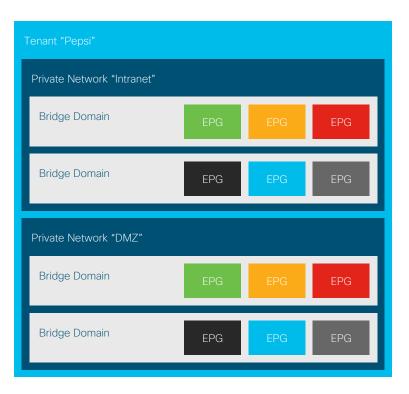

Cisco SDN Portfolio

Cisco Application-Centric Infrastructure

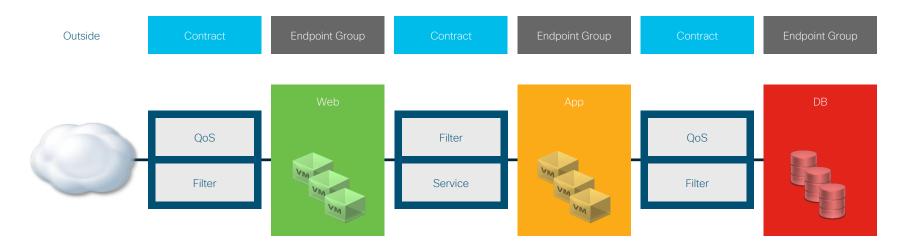
Design Principles

Design Principles




Design Principles

- spine-leaf architecture
 - add a spine to increase bandwidth
 - add a leaf to increase port count
- APIC cluster controls the fabric
- fabric acts as a single distributed (L3) switch from the application's point of view


Pererence

Multi-Tenancy

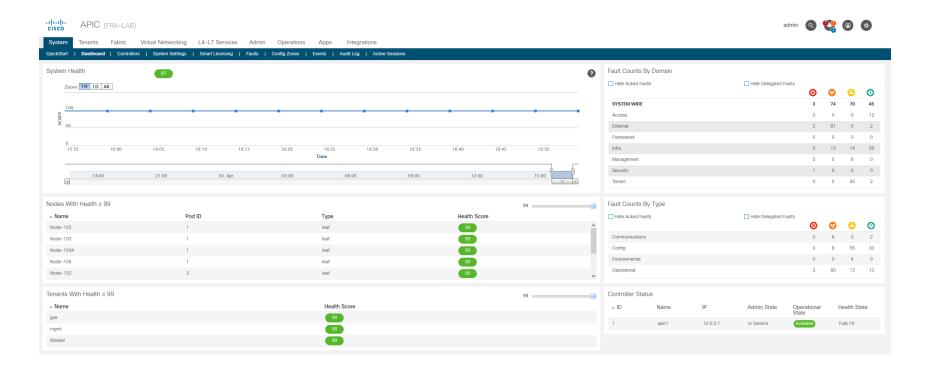
Policy Model

Policy Model

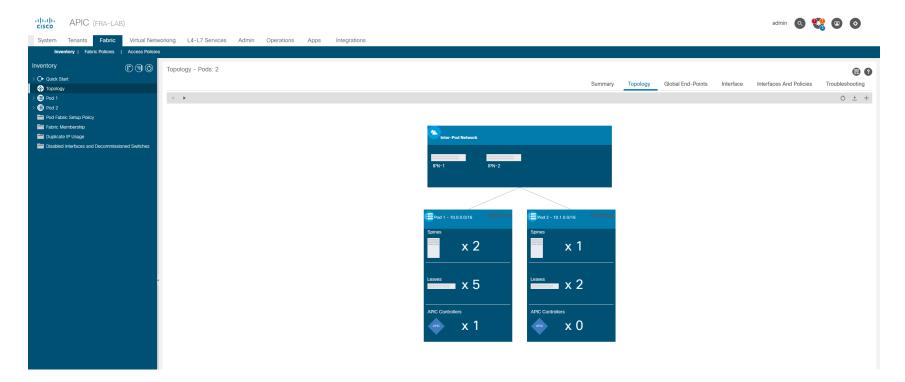
- Endpoint Group (EPG)
 - · collection of endpoints with similar functionality
 - possible form factors
 - physical servers
 - virtual servers
 - containers
 - ...
- Contract
 - collection of communication rules between EPGs
- whitelist model (all communication is forbidden by default)

Design: Network-centric vs. Application-centric

Network-centric


- basically an SDN version of traditional networking:
 - 1 VLAN/subnet \rightarrow 1 BD \rightarrow 1 EPG
- mostly an intermediate state on the way to an applicationcentric deployment

Application-centric

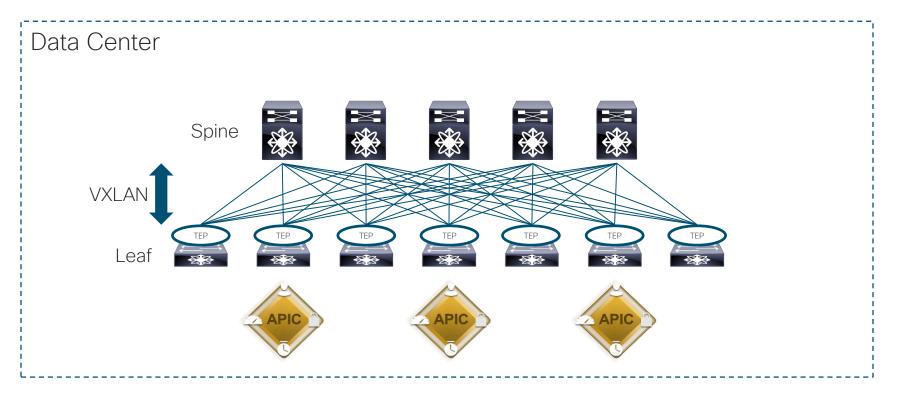

- application connectivity requirements directly mapped onto the network
 - 1 BD \rightarrow n subnets \rightarrow n EPGs
- no need for individual network provisioning (VLANs/subnets) per group of servers

Infrastructure Visibility

APIC: Dashboard

APIC: Topology

APIC: Endpoints


CISCO APIC (FRA-LAB)								admin 🔇 🥵	
System Tenants Fabric Virtual Networking	L4-L7 Services Admin	Operations Apps Integrations						-	
Inventory Fabric Policies Access Policies									
Inventory									
Inventory (Topo > Or Quick Start	ology								6 2
CP Quick Start GP Topology						Summary To	oology Global End-Points Interface Int	erfaces And Policies	Troubleshooting
> Pod 1								MAC End-Points	IP End-Points
> 🗊 Pod 2								-	0 <u>+</u>
Pod Fabric Setup Policy	G	End Point	▲ MAC	IP	Learning Source	Reporting Controller	Interface	Encap	Multicast
Fabric Membership						Name			Address
Duplicate IP Usage Infra Disabled Interfaces and Decommissioned Switches		EP-00:50:56:6C:70:B9	00:50:56:6C:70:B9	172.20.33.200	learned		Pod-1/Node-101/eth1/43	vlan-5	^
Disabled interfaces and Decommissioned switches		EP-00:50:56:6C:77:A9	00:50:56:6C:77:A9	172.20.32.42	learned		Pod-1/Node-103-104/UCS-HX-FI-B	vlan-2	
Infra		EP-00:50:56:6C:E6:62	00:50:56:6C:E6:62		vmm		172.20.17.11, 172.20.17.12	vlan-2005	
Infra		EP-00:50:56:6D:31:37	00:50:56:6D:31:37	172.20.33.23	learned		Pod-1/Node-101-102/UCS-FI-B	vlan-5	
Infra	astructure/Infrastructure/HX-Vmotion	EP-00:50:56:6E:21:D1	00:50:56:6E:21:D1	192.168.2.13	learned		Pod-1/Node-103-104/UCS-HX-FI-B	vlan-3093	
Infra	rastructure/infrastructure/Storage	EP-00:50:56:6E:B1:62	00:50:56:6E:B1:62	172.20.33.24	learned		Pod-1/Node-101-102/UCS-FI-A	vlan-5	
Infra		EP-00:50:56:6F:B1:1A	00:50:56:6F:B1:1A	172.20.32.41	learned		Pod-1/Node-103-104/UCS-HX-FI-B	vlan-2	
Infra	astructure/Infrastructure/Storage	EP-00:50:56:6F:DC:7A	00:50:56:6F:DC:7A	172.20.33.5	learned		Pod-1/Node-101-102/UCS-FI-A	vlan-5	
Infra	rastructure/Infrastructure/Cloud	Avi Cloud Controller	00:50:56:88:00:AB	172.20.35.61	learned vmm	vCenter-FraLab65	172.20.17.11, 172.20.17.12, Pod-1/Node-101-102/UCS	vlan-2134	
	astructure/Infrastructure/Cloud	WAC	00:50:56:88:08:B4		vmm	vCenter-FraLab65	172.20.19.61, 172.20.19.62	vlan-2134	
Infra	rastructure/Infrastructure/CoreNetz	StealthWatch FlowCollector for NetFlow VE	00:50:56:88:09:37		vmm	vCenter-FraLab65	172.20.17.11, 172.20.17.12	vlan-2001	
Infra	rastructure/Infrastructure/Cloud	UCSPE-6248	00:50:56:88:0C:F2		vmm	vCenter-FraLab65	172.20.19.61, 172.20.19.62	vlan-2134	
Infra	astructure/Infrastructure/Cloud	Avi-se-bxkes	00:50:56:88:0D:95	172.20.35.64	learned vmm	vCenter-FraLab65	172.20.17.11, 172.20.17.12, Pod-1/Node-101-102/UCS	vlan-2134	
Infra	astructure/Infrastructure/Cloud	Avi-se-fpphl	00:50:56:88:0E:FF	172.20.35.66, 172.20.35.70	learned vmm	vCenter-FraLab65	172.20.17.11, 172.20.17.12, Pod-1/Node-101-102/UCS	vlan-2134	
Infra	rastructure/Infrastructure/Cloud	K8-Node-2	00:50:56:88:0F:7B	172.20.35.53	learned vmm	vCenter-FraLab65	172.20.17.11, 172.20.17.12, Pod-1/Node-101-102/UCS	vlan-2134	
Infra	astructure/Infrastructure/CoreNetz	VSM7.9.0-160i-RHEL6_UCS-BC	00:50:56:88:11:A9		vmm	vCenter-FraLab65	172.20.17.11, 172.20.17.12	vlan-2001	
Infra	astructure/Infrastructure/Cloud	UCSPE-6248	00:50:56:88:14:89	172.20.35.150, 172.20.35	learned vmm	vCenter-FraLab65	172.20.19.61, 172.20.19.62, Pod-1/Node-103-104/UCS	vian-2134	
Infra	rastructure/Infrastructure/Storage	UCSD_NFS_Mount	00:50:56:88:15:8C	172.20.33.60	learned	vCenter-FraLab65	172.20.17.11, 172.20.17.12, Pod-1/Node-101-102/UCS	vlan-2070	
Infra	astructure/Infrastructure/Cloud	Repository	00:50:56:88:16:CD		vmm	vCenter-FraLab65	172.20.17.11, 172.20.17.12	vlan-2134	
Infra	rastructure/Infrastructure/Collab	Unified Intelligence Center	00:50:56:88:1C:C1		vmm	vCenter-FraLab65	172.20.17.11, 172.20.17.12	vlan-2136	
UC	COF LAB/UC COF/HO Server	COF HO CUC	00'50'56'88'1F'59		vmm	vCenter-Fral ab65	172 20 17 11 172 20 17 12	vlan-2074	

APIC: Capacity Dashboard

CISCO APIC (FRA-LAB)						admin 🔇 👯 😰 🔕
System Tenants Fabric Virtual Netw	vorking L4-L7 Services Admin Oper	ations Apps Integrations				
	Visibility & Troubleshooting Capacity E	ashboard EP Tracker Visualization				
Capacity Dashboard						
						Fabric Capacity Leaf Capacity
(E) IP Endpoints	(E) Proxy Database Entries	Bridge Domains	(III) Tenant	L3 Contexts	Signation Endpoint Groups	L4/L7 Devices
206	548	87	26	35	93	11
of 225000 (<1%)	of 450000 (<1%)	of 15000 (<1%)	of 3000	of 3000	of 15000 (<1%)	of 1200
O L4/L7 Graphs	U Hypervisors with ACI Endpoints	Virtual Machines with ACI Endpoints	Virtualization Ratio			
8	18	158	59.09%			
of 600 (1%)						

Under the Hood

Under the Hood

Under the Hood

- L3 point-to-point links
- loopback interfaces on each node
- VXLAN overlay
 - leaf switches are TEPs
- distributed anycast gateway on all leaf switches
- MP-BGP control plane
- further information → Cisco Live session BRKACI-3545
 "Mastering ACI Forwarding Behavior A day in the life of a packet"

Pererenc.

Example: Basic Network Provisioning – Traditional vs. ACI-based

Use Case: New Application Onboarding

- 3-tier application (web, application, database)
 - virtual servers
 - application tiers have to be logically separated

Network Provisioning: Traditional vs. ACI Approach

Traditional

- create VLANs
 - per VTP domain
- create SVIs
 - per L3 device
- configure interfaces
 - per device
- configure ACLs
 - per L3 device

ACI

- create Application Profile "XYZ"
 - once
- create EPGs (Web, App, DB)
 - once
- associate endpoints to EPGs
 - once
- associate contracts
- once

Network Provisioning: Traditional vs. ACI Approach

Traditional

VTP Primary Server

vlan 101 name XYZ_Web_Servers vlan 102 name XYZ_App_Servers vlan 103 name XYZ_DB_Servers

Access Switches

interface port-channel 10, ethernet 1/1-8 switchport trunk allowed vlan add 101-103

Virtualization Environment

create port groups connect VMs to port groups

Aggregation Switches

<ACL definitions omitted for simplicity> interface vlan 101 description XYZ Web Servers vrf member Production ip address 10.0.101.2/24 hsrp 101 ip 10.0.101.1 ip router ospf 1 area 0.0.0.0 <ACL bindings omitted for simplicity> interface vlan 102 description XYZ App Servers vrf member Production ip address 10.0.102.2/24 hsrp 102 ip 10.0.102.1 ip router ospf 1 area 0.0.0.0 <ACL bindings omitted for simplicity> interface vlan 103 description XYZ DB Servers vrf member Production ip address 10.0.103.2/24 hsrp 103 ip 10.0.103.1 ip router ospf 1 area 0.0.0.0 <ACL bindings omitted for simplicity>

interface port-channel 1, port-channel 10 switchport trunk allowed vlan add 101-103

ACI

APIC

create Application Profile "XYZ" create EPG "Web" create EPG "App" create EPG "DB" create and bind contract between "DB" and "App" create and bind contract between "App" and "Web" create and bind contract between "Web" and outside

Virtualization Environment

connect VMs to port groups

Example: Microsegmentation – Traditional vs. ACI-based

Microsegmentation: Traditional vs. ACI Approach

Traditional

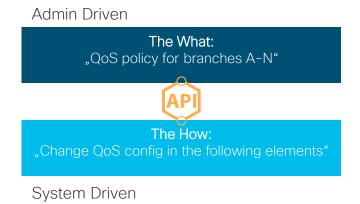
- create secondary VLANs
 - per VTP domain
- create PVLAN associations
 - per device
- configure interfaces
 - per device
- configure virtualization environment

ACI

- ☑ intra-EPG isolation
 - per EPG

Cisco Digital Network Architecture & Software-defined Access

Intent-based Networking


Manual Policy Deployment

Admin Driven

The What: "QoS policy for branches A-N"

The How: "Change QoS config in the following elements"

Intent-based Policy Deployment

Feature Configuration vs. Intent-based Networking

₿

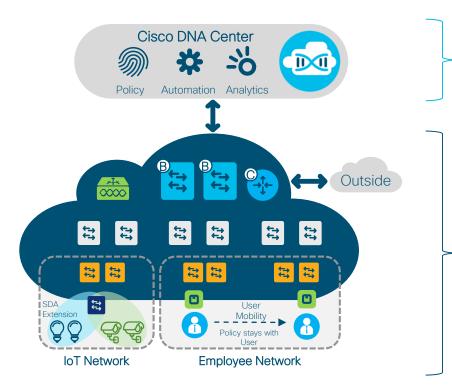
Feature Configuration

- QoS config in Prime:
 - choose device
 - choose interface (ingress/egress)
 - choose configuration
 - admin needs to understand QoS
- \rightarrow complex and error prone

ups			
T	Enable App Visibility 💌 Disable App Visibility	Enable QoS Dis	Enable QoS
Type	Location Device Name	Device IP	Details CLI Preview
em Defined	1AMSTERDAM AMS-ASR1K-INET	10.11.254.2 (j) G	Details CLI Preview
Defined	2AMSTERDAM AMS-ASR1K-INET	10.11.254.2 (j) G	✓ Enable QoS on Ingress
	3AMSTERDAM AMS-ASR1K-INET	10.11.254.2 (j) G	-
	4AMSTERDAM AMS-ASR1K-INET	10.11.254.2 (j) G	
	5AMSTERDAM AMS-ASR1K-INET	10.11.254.2 (j) G	Classify based on profile test101
	6AMSTERDAM AMS-ASR1K-INET	10.11.254.2 🧊 G	
	7 AMSTERDAM AMS-ASR1K-INET	10.11.254.2 (j) L	✓ Enable QoS on Egress
	8AMSTERDAM AMS-ASR1K-INET	10.11.254.2 ① T	Classification
	9AMSTERDAM AMS-ASR1K-INET	10.11.254.2 (j) G	Classify based on DSCP (2)
	10AMSTERDAM AMS-ASR1K-INET	10.11.254.2 (j) Ti	Classify based on profile
	11 CE-LAB/SJ-HQ ASR1K-CORE1	10.0.2.2 🕧 G	
	12E-LAB/SJ-HQ ASR1K-CORE1	10.0.2.2 () 1	QoS scheduling
			Scheduling action based on profile egress-8-c
			You are about to enable QoS on :
			Devices Total 1
			Interfaces Total 3

Deploy

Cancel


Feature Configuration vs. Intent-based Networking

Intent-based Networking

- QoS in DNA Center
 - application focus
 - configure application policies based on the business requirements
 - configure sites, not devices

2 Sites Queuing Profiles CVD_QUEUING_PROFILE SP Profiles 0 Profiles							
a state data and states of the data and provide an states of the	Host Tracking Off				EQ, Fin		
Relevant (17)	Default (6)			Business Irrelevant ((6)		
Custom_Video_Set ×	> File-Sharing 32 applications		×	> Consumer-Browsing 223 applications		×	
Authentication-Services X 39 applications	9 applications		×	> Consume 38 applicat	er-File-Sharing	×	
Backup-And-Storage X 14 applications	General-Me 12 application		×	Consume 15 applicat		×	
Collaboration-Apps × 42 applications	General-Mi 485 acolcato		×	S Consume 98 applicat		×	
Database- 33 application			Bra	anch-Policy			
Application Policies Application Sets							
Desktop-V 18 application			0		3	0	
Email	3		Falled devices	Succe	essful devices	Aborted devices	
29 application Y Filter Actions - 15	0			0		0	
Policy Name ~	Total devis	les	N	New devices	Devices	being configured	
Ilranch-Policy							
	7 Filter					Last o	pdated 2.57 pm
De	vice Name Sil	te	Status	Status Details	Device Type	Network Role	Device IP Addr
BR	-SW1.claco.com GA	obat/USA/SJC/Branch	SUCCESS 0	NZA	Cisco Catalyst 9300 Switch	DISTRIBUTION	10.10.64.2
BR	-R1.cisco.local Gi	lobal/USA/SJC/Branch	SUCCESS 0	N/A	Cisco 2921 Integrated Services Router G2	BORDER ROUTER	10.2.252.2
Bu	-SW2.cisco.com Gi	lobal/USA/SJC/Branch	SUCCESS Ø	N/A	Cisco Catalyst 9300 Switch	ACCESS	10.10.64.7
BR	-SW2.cisco.com Gi	obal/USA/SJC/Branch	SUCCESS @	N/A		ACCESS	10.

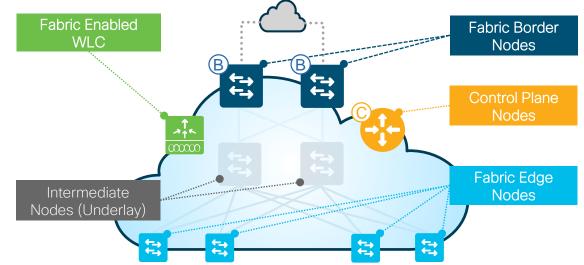
Cisco DNA & SDA

Application to manage the network:

- Design
- Policy
- Provision
- Assurance

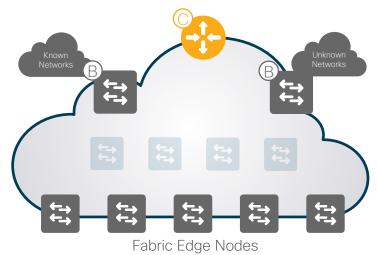
Campus Fabric:

- Control plane based on LISP
- Data plane based VXLAN
- Policy plane based on SGT


Cisco SD-Access

Control Plane Nodes – Map system that manages endpoint ID to device relationships

Border Nodes – A fabric device (e.g. core) that connects external L3 network(s) to the SDA fabric


Edge Nodes – A fabric device (e.g. access or distribution) that connects wired endpoints to the SDA fabric

Fabric Wireless Controller – A fabric device (WLC) that connects wireless endpoints to the SDA fabric

SDA – Control Plane Nodes

- runs a host tracking database to map location information
 - A simple host database that maps endpoint IDs to a current location, along with other attributes
 - Host database supports multiple types of endpoint ID lookup types (IPv4, IPv6 or MAC)
 - Receives endpoint ID map registrations from edge and/or border nodes for "known" IP prefixes
 - Resolves lookup requests from edge and/or border nodes, to locate destination endpoint IDs

SDA – Control Plane Nodes

lyst 9300/9400/9500

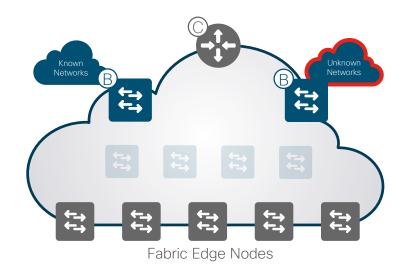
diado. Cisco

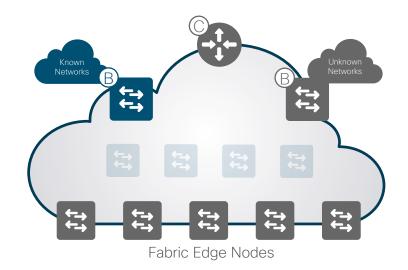
									HILL	111111		
				_				1				_1
		H at	71.01	44.744.72	40.044.0140	or or other	14.10	1.000	1.10.594	10.00	10.101.9	0.000
-	 											
		L.L.	11	<u>-</u>				11	11	11	44	

Catalyst 6800

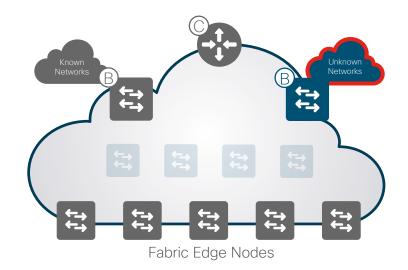
-

ASR 1000/ISR 4000 & CSRv

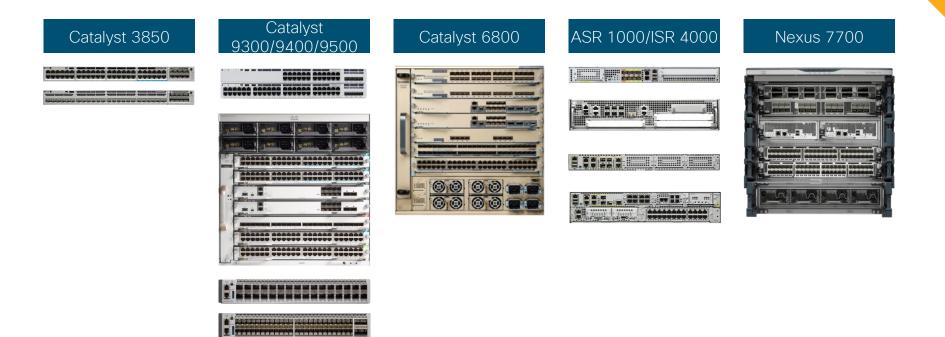

Reference


SDA – Border Nodes

- entry and exit point for all data traffic coming in or going out of the fabric
- two types:
 - Fabric Border (internal)
 - used for "known" routes in your company
 - Default Border (anywhere)
 - used for "unknown" routes outside your company

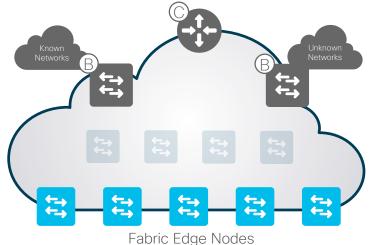

SDA – Fabric Border Nodes

- advertise endpoints to outside and known subnets to inside
 - connect to any "known" IP prefixes (e. g. DC, WLC, FW, etc.)
 - export all internal IP pools outside (as aggregate) using a traditional IP routing protocol(s)
 - import and register (known) IP subnets from outside the fabric to the control plane
 - outside hand-off requires mapping the prefix context (VRF and SGT) from one domain to another



SDA – Default Border Nodes

- gateway of last resort for unknown destinations
 - connect to any "unknown" IP prefixes (e. g. internet, public cloud, 3rd party, etc.)
 - export all internal IP pools outside (as aggregate) using a traditional IP routing protocol(s)
 - are a default domain exit point, if no other (specific) entry present in map system
 - outside hand-off requires mapping the prefix context (VRF and SGT) from one domain to another


SDA – Border Nodes

Reference

SDA - Edge Nodes

- provide first-hop services for users/devices connected to the fabric
 - responsible for identifying and authenticating endpoints (e. g. static, 802.1X, Active Directory)
 - register the specific endpoint ID info (e. g. /32 or /128) with the control plane node(s)
 - provides an anycast L3 gateway for connected endpoints (same IP address on all edge nodes)
 - performs encapsulation/decapsulation of data traffic to and from all connected endpoints

SDA - Edge Nodes

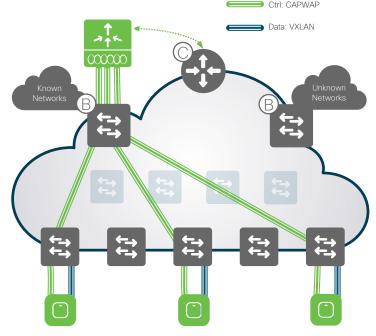
Catalyst 9400/9500

Reference

Catalyst 4500-E

Catalyst 9200/9300

 CHARGE BROOM BROAM	*****		
		*****	•


* - * : : : : * 	*****		
	*****	*****	
****** ******	******	*****	(enterented)

Catalyst 3650/3850

000000	 	 (managed)

SDA – Wireless LAN Controller

- fabric-enabled WLCs are integrated into fabric for SDA wireless clients
 - connect to fabric via border (underlay)
 - fabric-enabled APs connect to the WLC (CAPWAP) using a dedicated host pool (overlay)
 - fabric-enabled APs connect to the edge via VXLAN
 - wireless clients (SSIDs) use regular host pools for data traffic and policy (same as wired)
 - fabric-enabled WLC registers clients with the control plane (as located on local edge + AP)

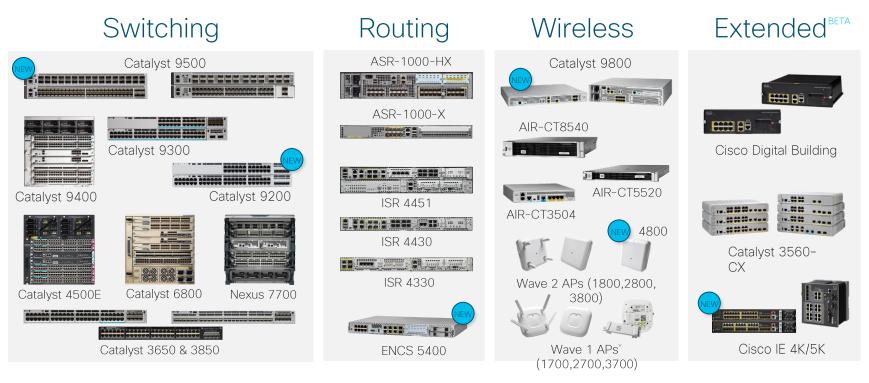
SDA – Wireless LAN Controller

Catalyst 9800

CT 3504/5520/8540

Wave 1*/2 APs

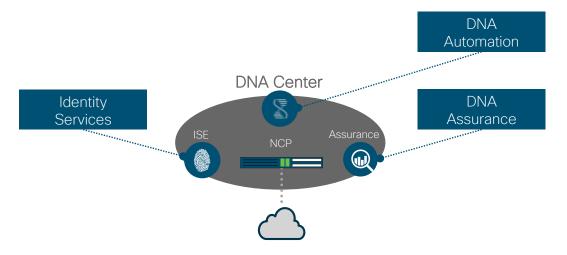
Pererence


Wave 1 APs (1700,2700,3700)

Wave 2 APs (1800, 2800, 3800, 4800)

*with caveats

SDA - Device Portfolio


Reference

Cisco DNA Center

DNA Automation – provides simple GUI management and intent-based automation (e. g. NCP) and context sharing

Identity Services – NAC and ID systems (e. g. ISE) for dynamic endpoint to group mapping and policy definition

DNA Assurance – data collectors (e. g. NDP) analyze endpoint to app flows and monitor fabric status

Cisco DNA Center

- global settings
- site profiles
- DDI, SWIM, PNP
- user access

dada Dija Dan	· · · · · · · · · · · · · · · · · · ·	Seage Private Palay	- 0
	n antering have not framelies are and an approve. Do	New York York Caref Jones Reg Description	Constant of Constant of Constant One of Constant One of Constant One of Constant One of Constant One of Constant One of Constant
		0000	00000

- virtual networks
- ISE, AAA, RADIUS
- endpoint groups
- group policies

- fabric domains
- CP, Border, Edge
- FEW, OTT WLAN
- external connect

Assurance

- health dashboard
- 360° views
- FD, Node, Client
- Path Traces

Platform

• allows programmatic access with 3rd-party systems using APIs, using feature set bundles, configurations, a runtime dashboard, and a developer toolkit

Cisco DNA Center

Model your entire network, from sites and buildings to devices and links, both physical and virtual, across campus, branch, WAN and cloud.

- · Add site locations on the network
- Designate golden images for device families
- · Create wireless profiles of SSIDs

Use policies to automate and simplify network management, reducing cost and risk while speeding rollout of new and enhanced services.

- Segment your network as Virtual Networks
- Create scalable groups to describe your critical assets
- · Define segmentation policies to meet your policy goals

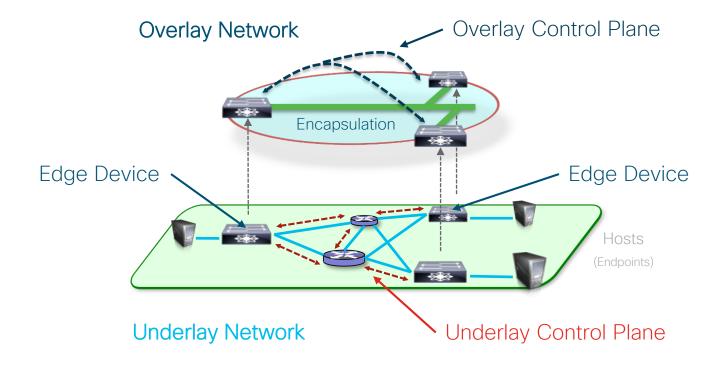
Provision

Provide new services to users with ease, speed and security across your enterprise network, regardless of network size and complexity.

- Discover Devices
- Manage Unclaimed Devices
- Set up fabric across sites

Assurance

Use proactive monitoring and insights from the network, devices, and applications to predict problems faster and ensure that policy and configuration changes achieve the business intent and the user experience you want.


- Assurance Health
- Assurance Issues

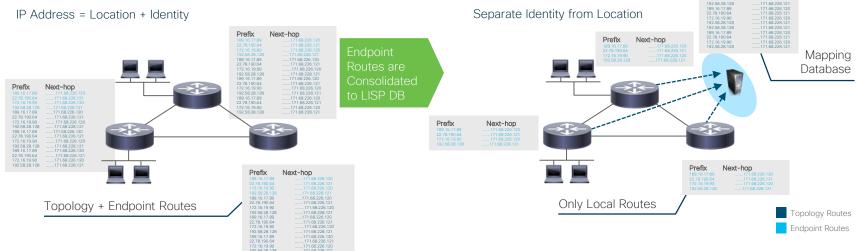
Platform

Use DNA Center Platform, to programmatically access your network through Intent APIs, integrate with your preferred IT systems to create end-to-end solutions and add support for multi-vendor devices.

- View the API Catalog
- Configure DNA Center to Third Party Integrations
- Schedule and Download Data and Reports

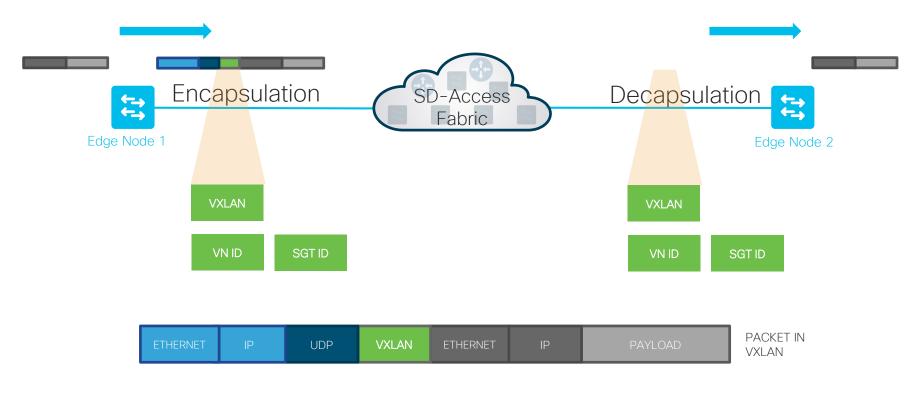
SDA – Underlay/Overlay

SDA – Control Plane (LISP)

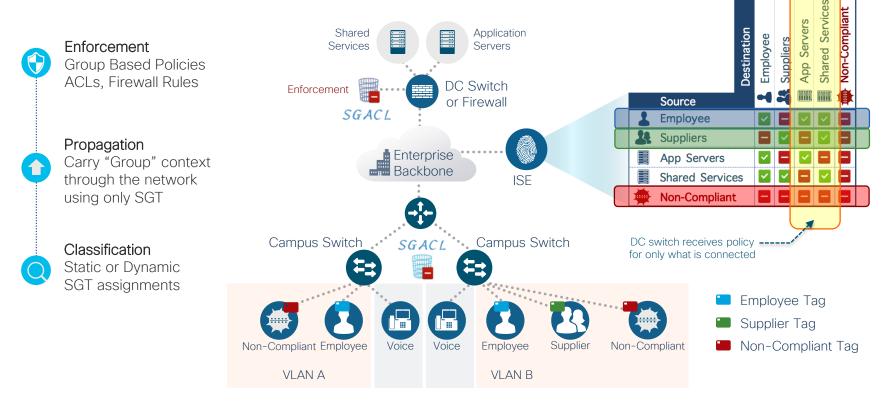

Routing Protocols = **Big Tables** & **More CPU** with Local L3 Gateway

BEFORE

LISP DB + Cache = Small Tables & Less CPU with Anycast L3 Gateway


Prefix

RLOC


AFTER

SDA – Data Plane (VXLAN)

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

SDA – Policy Plane (SGT)

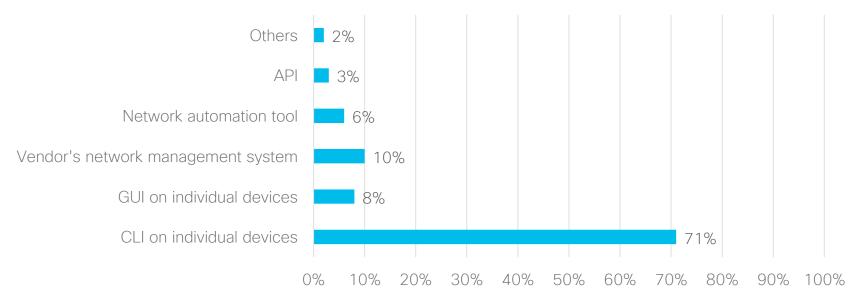
Cisco DNA & SDA

What we do is the same.

How we do it is different.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Future Net Admin Skill Set


Future Net Admin Skill Set

- understanding of advanced networking concepts
 - (relatively) new technologies/architectures (VXLAN, LISP ...)
 - virtualization and container networking
- programming/scripting knowledge to drive automation
 - (REST) APIs
 - data structures (XML, JSON, YAML ...)
 - Python, PowerShell, Ansible ...

Summary and Evaluation

Critical Observation

What is the primary method of making network changes in your environment?

*https://blogs.gartner.com/andrew-lerner/2018/01/04/checking-in-on-the-death-of-the-cli/

Summary and Evaluation

- What's next?
 - Cloud computing is now over 15 years in the market, still evolving/adapting at some customers.
 - SDN is now 5 years in the market, quite new and needs time to be adapted, similar to IoT (Industrie 4.0).
 - But what's the next step if we follow up this timeline?

Technology Evolution

- SDN technologies need to be standardized
- orchestration of solutions
- integeration into existing deployments (campus to data center endto-end)
- extension to other areas (e.g. industrial, mobile and cloud networks)
- connection to business critical applications (ERP, CRM, etc.)

Questions?

More Questions?

Jan Haasch

Business Operations Manager Security and Trust Office

+49 30 97892414 janhaas@cisco.com

Tim Heckmann

Consulting Engineer Customer Experience

+49 30 97892888 timheckm@cisco.com ılıılı cısco